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ABSTRACT 

Transcranial Magnetic Stimulation is a novel non-invasive neuromodulation 

technique to treat human brain disorders such as depression, Parkinson’s disease and PTSD. 

It uses pulsed currents in the coils to generate time varying magnetic field which induce eddy 

currents in the conductive tissues of the human brain. Recently, there have been many 

research publications in the field of TMS, specifically on coil designs, clinical trials and 

some in-vivo animal studies. 

Even though FDA has approved TMS technique to treat depression, the basic 

mechanism or how the neural tissue reacts to TMS is still not well understood. Therefore, 

conducting in-vitro study on TMS will enable researchers to understand how TMS has 

influence on neural cells and neural tissue growth rate, morphology, axon length and other 

factors. In this work, I have conducted experiments on effect of TMS on N27 dopaminergic 

neural cells, an immortal cell line of rat, to investigate the effect on cell’s growth rate. 

Results will enable neuroscientists to understand the mechanism of TMS on neural cells. 

As a part of TMS project, I have also worked on the development of a TMS helmet 

design. Due to the limitation of patient’s head size and rapid decay rate of magnetic field 

away from coil surface, designing an efficient and compact coil system is needed to treat 

deep brain regions. We have developed a variable coil system with combination of fixed 

single coil on top and variable Halo coil to realize deep brain stimulation with automatic 

control system and graphic user interface (GUI). In the meantime, I also conducted thermal 

and mechanical analysis of new coil configuration to investigate heating effect and 

electromagnetic force on the whole coil system. This system can be used by researchers or 
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clinicians with relative ease, maintaining the accuracy of coil position relative to the patients 

head.  
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CHAPTER 1.GENERAL INTRODUCTION 

 

Transcranial Magnetic Stimulation (TMS) 

Transcranial Magnetic Stimulation (TMS) is a non-invasive neuromodulation technique 

which has potential to treat various neurological disorders such as major depressive disorder, 

Parkinson's disease, Post-traumatic stress disorder (PTSD) and migraine non-invasively and 

safely. It uses short pulses of time varying magnetic field to induce an electric field in the 

conductive tissues of the brain, hence, modulating the synaptic transmission of neurons. This 

neuromodulation technique can be used to excite or inhibit the firing rate of neurons by 

influencing the ion activities inside and outside of neuron’s plasma membrane [1-5].  

 

Fig.1 The illustration of TMS treatment on human brain (from Laboratory for cognition 

and neural stimulation in school of medicine at University of Pennsylvania) 

Fig.1 illustrates the basic mechanism of TMS and how it affects brain behavior of human. 

TMS uses different types of coils such as single coil, double coil, Halo coil and Helmholtz coil to 

generate different types of magnetic field in the human brain. In clinical trials, physicians put 
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certain type of coil according to the specific region of human brain like hippocampus and motor 

cortex to treat specific brain disorders [5].  

Research Motivation 

Since the US Food and Drug Administration (FDA) approved TMS as a treatment for 

depression in 2008, there has been an increasing research interest on TMS. As shown in Fig.2, 

the major fields are computer modeling and coil design, in-vitro and in-vivo studies and clinical 

trials [6-7]. More importantly, understanding the mechanism of TMS on brain or how TMS 

affects individual neurons or neural tissues would bring a big breakthrough to the current theory.  

 

Fig. 2 Illustration of research areas on TMS 

Therefore, doing in-vitro study on TMS is a good approach to investigate effect of TMS 

on several parameters like growth rate, soma size of individual neurons or neural networks. 

These kinds of work would be addressed into the study on growth rate, morphology and protein 

analysis of neurons. The motor symptoms of Parkinson's disease result from the death of 

dopamine generating cells in the midbrain region, substantial nigra.1RB3AN27 cell line is the 

immortalized dopamine neural cells from rat brain. This immortalized cell line has been carefully 
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characterized in studies of dopamine biosynthesis, neurotoxicity and used as a dopaminergic 

neuron model for in vitro and in vivo studies. Therefore, there have been numerous efforts to 

understand the basic mechanism of the degenerative process of dopaminergic neurons and to 

realize neural genesis in substantial nigra to cure Parkinson’s disease [8]. 

Besides, another aspect of research on TMS is designing efficient, compact coils or a coil 

system to treat different regions of the human brain especially the deep-lying regions. Thus, 

overcoming the fast decay rate of the magnetic field to induce enough electromagnetic fields in 

deep brain regions is one big challenge right now. Meanwhile, building a compact or even an 

automatic TMS coil system will make it easier for doctors to conduct TMS treatment in clinical 

trials. 

Thesis Organization 

Chapter 2 and Chapter 3 describe two parts of my work on TMS, focusing on in-vitro and 

coil design of TMS, respectively. Chapter 2 mainly shows the effect on different orientation of 

magnetic field on the proliferation rate of dopaminergic neurons with three different cell 

counting methods. It also gives a literature review of the beneficial effect of static and time 

varying electromagnetic field with different frequency ranges. Chapter 3 mainly describes work 

on computer modeling of thermal and mechanical analysis of variable TMS coil system and an 

illustration of graphic user interface (GUI) of the coil system. 

Chapter 4 summarizes all of work in this thesis and some recommendations for future 

work on TMS like morphology study and protein analysis of neurons to understand the 

mechanism of TMS. References can be found at the end of each chapter. Appendix A lists all of 

my journal and conference publications during my master’s degree. Appendix B shows the 

results of computer modeling of electromagnetic field for the variable TMS coil system. 
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CHAPTER 2. DIFFERENTIAL EFFET OF MAGNETIC FIELD ORIENTATION ON 

THE PROLIFERATION RATE OF DOPARMINERGIC NEURONS DURING 

TRANSCRANIAL MAGNETIC STIMULATION 

Modified from a paper submitted to Neuroscience of Elsevier 
 

Y. Meng1, R. L. Hadimani1, L. J. Crowther1, V. Anantharam2, Gary Zenitsky2, A. Kanthasamy2 and D. C. Jiles1 
1Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 USA 

2Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA 
 

Abstact 

Transcranial magnetic stimulation (TMS) has been used to investigate possible 

treatments for a variety of neurological disorders. But the effect that magnetic fields have on 

neurons has not been well documented in the literature. Using a monophasic stimulator, we 

investigated the effect of different orientation of magnetic field generated by TMS coils on 

the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. Exposing 

horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal 

proliferation layer increased the proliferation of cells compared with the control group. On 

the other hand, proliferation rate decreased in cells exposed to a magnetic field pointing 

downward through the neuronal growth layer compared with the control group. The results 

were consistent across different methods of measuring proliferation and cell counting 

procedures. We confirmed results obtained from the Trypan-blue and automatic cell counting 

methods with those from the CyQuant and MTS cell viability assays. Our findings could 

have important implications for the preclinical development of TMS treatments of 

neurological disorders and represents a new method to control the proliferation rate of 

neuronal cells. 

Key words: TMS; dopaminergic neurons; proliferation rate; orientation of magnetic field  
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Introduction 

Transcranial Magnetic Stimulation is a non-invasive neuromodulation technique that 

uses time varying short pulses of magnetic field to induce an electric field in the conductive 

tissues of the brain thus, modulating the synaptic transmission of neurons. This 

neuromodulation technique can be used to excite or inhibit the firing rate of neurons which 

can then be used for treatment of various neurological disorders such as major depressive 

disorder, Parkinson's disease, Post-traumatic stress disorder and migraine [1-5]. Since the US 

Food and Drug Administration (FDA) approved TMS as a treatment for depression in 2008, 

there has been less focus on in vitro and animal studies in the literature compared to in vivo 

studies in humans [6-8]. The effects of TMS on individual neurons need to be thoroughly 

understood to fully utilize TMS as a neuromodulation tool for treating neurological disorders 

especially those originating from subcortical regions of the brain.  

Few articles have reported the effect of time-varying magnetic fields, similar to those 

generated by TMS, on the proliferation rates of neurons. Bonmassar et al. designed micro 

TMS coils and showed that the direction of magnetic field affects the firing frequency of 

neurons, but the authors did not report the effect of magnetic field on the proliferation rate [9]. 

Meanwhile, some articles have reported the effect of static magnetic field on cell’s 

proliferation rate. Authors have used static magnetic fields from 1 to 10 tesla and did not find 

any significant effect on cell proliferation or on genetic toxicity, regardless of the length of 

treatment. However, there was a small effect on intracellular Ca2+ ion control [10]. Some 

articles have reported beneficial effects of DC electric field (EF) on neural proliferation and 

differentiation. The EF gradient affects morphology and phenotype of adult neural 

stem/progenitor cells (NPCs), which shows the potential of utilizing EF to control migration, 
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differentiation and alignment of stem cells transplanted to treat nervous system disorders [11]. 

Extremely low-frequency electromagnetic fields (ELF-EMFs) have been used therapeutically 

to drive cardiac-specific differentiation in adult human cardiac progenitor cells without any 

pharmacological or genetic manipulation of cells [12]. As far as we know, no one has 

published on the effect of TMS magnetic field on the proliferation rate of neurons or on the 

morphology of cells.  

In this paper, we have presented the effect of magnetic field generated by TMS coils 

on the proliferation of N27 dopaminergic neurons. We have used different cell proliferation 

and cell counting procedures to confirm that directing a magnetic field downward or upward 

through the horizontal proliferation plane of adherent cell cultures decreased or increased cell 

proliferation rates, respectively. It is important to note that the direction of the induced electric 

current from the time varying TMS fields will be in clockwise or counterclockwise loops 

when the magnetic field is in up or down direction of the cell culture as shown in Fig. 4. This 

experimental set up is similar to the TMS treatment on human brain where the induced 

electric field from the TMS coils will be in clockwise or counterclockwise loops in the cortex.   

Experimental procedures 

A. Magnetic Field Generated by TMS coils 
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A Magstim Standard 70 mm double coil was used for treating N27 neurons. Magnetic 

field was measured on the surface of the coil using a gaussmeter and a Hall probe. The field 

was also calculated using finite element electromagnetic modeling software, SEMCAD X. 

The measured and calculated axial components of the magnetic field intensities are shown in 

Fig.3 and Fig.4. Magnetic field is negative in the negative x-axis and positive in the positive 

x-axis which is shown Fig. 4. It also shows magnetic field values at 5mm above the coil 

surface where dopaminergic neurons are placed during TMS treatment after considering the 

thickness of flask and thermal insulation layer. According to these figures, the peak value of 

measured magnetic field intensity at 5mm above the coil surface is 0.55 MA/m which is 

reduced by approximately 0.1MA/m. Fig. 5 shows the top view of distribution of magnetic 

field intensity generated by double coil. Fig.6 shows the different orientations of magnetic 

field generated by the coil and directions of current in each circle of the double coil. The red 

Fig.3 The axial component of magnetic 
field intensity along the diameter of a 
Magtism® Standard 70 mm double coil at 
coil surface. The red line is simulation 
result from SEMCAD X and the black line 
is measured result using gauss meter. The 
intensity of Magstim Rapid2 stimulator 
was 100%. 
 
 

Fig. 4 The axial component of magnetic field 
intensity along the diameter of a Magtism® 
Standard 70 mm double coil at height of 5mm 
above coil surface. The red line is simulation 
result from SEMCAD X and the black line is 
measured result using gauss meter. The 
intensity of Magstim Rapid2 stimulator was 
100%. 
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arrows on the left indicate the directions of supplied current (5000 A) in left circle as 

counterclockwise and clockwise in the right circle. The cross symbols indicate the magnetic 

flux pointing into the plane and the dot symbols indicate the magnetic flux pointing out of the 

plane.  

 
 

 
 

 
 
 

 
 

 
 

 

According to Maxwell’s equation ( ), time-varying magnetic field 

will generate an electric field which induces eddy currents in the conducting neurons. The 

supplied current is a pulse wave which has a frequency of 2.5 kHz and magnitude of 5000 A, 

so its period is 0.4 ms. The stimulator sends only one pulse with a current amplitude of 5000 

Fig. 5 Distribution of magnetic field 
intensity of double coil (2D top view). 
 

Fig. 6 Orientation of magnetic flux lines 
generated by double coil, cross representing 
upward and dot representing downward field. 
The red arrows show the direction of supplied 
current with a peak magnitude of 5000 A. The 
two blue polygons represent the two flasks. 
 

Fig. 7 Distribution of induced current on 
the coil plane at the first half of period of 
supplied current (2D top view). 
 

Fig. 8 Distribution of induced current on the 
coil plane at the second half of period of 
supplied current (2D top view). 
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A in clockwise and counterclockwise directions in left and right circles of the coil 

respectively as shown in Fig. 6. Thus, the supplied current in each circular coil will generate 

a time varying magnetic field changing from 0 to its peak value, during its first half period, 

which results in the corresponding induced eddy current in both areas shown in Fig. 7 and 

Fig. 8. According to Lenz’s law the induced current in the left circular coil was 

counterclockwise and it was clockwise in the right circular coil. Similarly, the value of the 

supplied current in both coils would change from its peak of 5000 A to 0 during the second 

half period. Thus, the induced eddy currents on the left and right flasks were clockwise and 

counterclockwise, respectively. Therefore, the difference between the two flasks was the 

sequence of the direction of the eddy currents. 

B. Cell Culture 
Immortalized rat mesencephalic 1RB3AN27 cells (N27) were grown in RPMI-1640 

medium supplemented with 10% fetal bovine serum, 1% L-glutamine, 50 units penicillin and 

50 µg/ml streptomycin and maintained at 37°C with a humidified atmosphere containing 5% 

CO2, as described previously [13,14]. On Day 0, an equal number of N27 cells were seeded 

into each T-75 flask or 96-well plate. Groups were distinguished by culture time with two 

control and two TMS groups per time point and four replicate samples (flask or plate) per 

group. Control 1 was always kept in the incubator and was named Incubator in Table I. 

Control 2 was kept in the biosafety cabinet during the TMS treatment and was named 

Environmental in Table I. Table I shows culture time points and counting time points for the 

different sample locations and magnetic field orientations (“Field up” and “Field down”), 

which were used in a Trypan blue cytotoxicity assay. Table II shows cell culture samples 

with their culture time points as well as counting time points used in a CyQuant cell 

proliferation assay. Table III shows culture samples with their culture and counting time 
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points for an MTS cell viability assay and cell counting method. We performed a cell count 

for each sample of cells 24 hours after its TMS treatment to ensure that the cells had enough 

time to show any effects of TMS on their proliferation. 

C. TMS experiment on dopaminergic neurons 
We used a monophasic stimulator to treat N27 cell cultures. A set of 6 pulses with 4 

seconds waiting time in between them was formed as one train and a waiting time of 10 

seconds between each train was introduced, so the pulse repetition rate (TMS treatment 

frequency) we used is 0.25 Hz. This is a low frequency compared to usual clinical protocol 

frequency however, in order to obtain 100% power in the coil and avoid rapid heating up of 

the coil we have used this low frequency. It is not possible to operate at higher frequencies at 

full power with the existing set-up. A total of 60 trains with 360 pulses were delivered per 

30-minute TMS treatment. An air-cooled double coil was used which has opposite current 

directions in each coil, generating magnetic fields on top side of each coil with opposite 

directions. Using air-cooled coils allowed us to induce magnetic fields without raising the 

temperature of the T-75 flasks placed on them. All TMS treatments on N27 cells were 

performed in a sterile biosafety cabinet (Fig. 9). The flask set above the left coil was 

designated “Field up” and the flask set above the right coil was designated “Field down”, 

corresponding to the orientation of the magnetic fields.  
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Fig. 9 Arrangement of the 30-minute TMS treatment delivered to two T-75 flasks. The 
directions of the two oppositely oriented magnetic fields were labeled on the double coil. 
Field orientation was upward on the left coil and downward on the right coil, as shown in the 
inset figure. We used two clamps to fix the coil in the cell culture cabinet and a layer of 
bubble wrap separated both flasks from the coils to maintain a thermal barrier. 

D. Cytotoxicity assay   
 Cytotoxic cell death was measured as per Life Technologies’ Trypan blue exclusion 

cell counting method [15]. Briefly, after treatment cells were harvested with trypsin-EDTA 

and resuspended in 1X PBS, we then took 10 µl of cell suspension from one sample and 

added with 10 µl of 0.4% trypan blue solution (Life Technologies). Then, we put 10 µl of the 

mixture into the cell counting slide and place the slide into the automatic cell counter to 

count the concentration of cells in each sample.  Finally, we extrapolated the total number of 

cells in each sample by multiplying its volume and concentration [15].  By using this method, 

we counted the number of cells in each of the four replicate samples according to the 

counting time points shown in Table. I. We studied the effect of TMS on 2 different initial 

cell densities, 1 million cells/flask and 0.5 million cells/flask (n=4).  
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E. CyQuant cell proliferation assay  

 We used Life technologies’ CyQuant cell viability assay to confirm our results from 

the Trypan blue cell counting procedures. On day 0, we seeded the N27 cells in 24-well 

plates (n=3) with the four rows per plate. In each plate, there were 4 rows and three columns. 

Row 1 to row 4 have different seeding densities; 20k, 50k, 80k, to 100k, respectively. Each 

row had three replicated samples in three columns to account for standard deviation. We had 

three groups with different culture times: Day 0, Day 1 and Day 2 (Table II). Briefly, after 24 

Culture 
Time 
point 

Counting 
Time 
point 

Sample Description 

Day 0 Day 1 Incubator Environmental Field 
up 

Field 
down 

Day 0.5 Day 
1.5 

Incubator Environmental Field 
up 

Field 
down 

Day 1 Day 2 Incubator Environmental Field 
up 

Field 
down 

Day 1.5 Day 
2.5 

Incubator Environmental Field 
up 

Field 
down 

Day 2 Day 3 Incubator Environmental Field 
up 

Field 
down 

Culture 
Time 
Point 

Counting 
Time 
point 

Sample Description 

Day 0 Day 1 Environmental Field 
up 

Field 
down 

Day 1 Day 2 Environmental Field 
up 

Field 
down 

Day 2 Day 3 Environmental Field 
up 

Field 
down 

Table 1. Design of the TMS experiment with 
Trypan blue cell counting method for cell 
densities of 1 and 0.5 million cells /flask. 

Table 2. Design of the TMS experiment 
with CyQuant cell viability assay cell 
counting method for cell densities of 
100k, 80k, 50k and 20k per well 
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hours post-treatment, we read the fluorescence with excitation maximum at 485 nm and the 

emission maximum at 530 nm using a Synergy 2 plate reader (BioTek) [16]. We pooled the 

groups designated as Incubator and Environmental in Table I, because the difference between 

them was insignificant. 

 F. MTS cell viability assay cell counting method 

 Cell viability was measured using Promega’s MTS assay   to confirm the results from 

Trypan blue and CyQuant cell proliferation assays. Briefly, on day 0, we seeded the wells of 

96-well plates with 15k for one row and half with 20k for another row of N27 cells in 200 µL 

of proliferation medium per well. Each row had 6 duplicated samples (n=6). The design of 

the experiment was according to Table III., TMS treatment was performed with “Field up” 

and “Field down” on 2 different well plates. After 24 hours post-treatment, 20µl MTS 

reagent (CellTiter 96® Aqueous One Solution Reagent) was added to each well and 

incubated at 37°C in a CO2 incubator for 90 min and absorbance was read at 490 nm and 670 

nm in a Spectramax plate reader (Molecular Devices). We subtracted the baseline via Abs490-

Abs670 prior to data analysis [17]. 

 
Table 3. Design of the TMS experiment with MTS cell viability assay cell counting method 
for cell densities of 15k and 20k per well. 

 

 

 
 

G. Statistical significance analysis 

Statistical significance analysis was performed using Originlab 9.0 software 

(OriginLab Corporation, Northampton, MA, USA). Raw data analysis were analyzed using a 

Culture 
Time 
Point 

Counting 
Time 
point 

Sample Description 

Day 0 Day 1 Control  Environmental Field 
up 

Field 
down 
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two unpaired t-test. Statistically significant differences are indicated by asterisks as follows: 

*p<0.05, **p<0.01 and *p<0.001.  

Results 

After TMS treatment of N27 cells, we counted the number of viable cells using the 

Trypan blue method for initial seeding densities of 1 million (Fig. 10) and 0.5 million (Fig. 11) 

cells per flask. The culture time and counting time points are indicated in Table I. The result 

showed that the proliferation rate increased after TMS stimulation with the magnetic field 

oriented upward through the horizontal plane of adherent cells, compared to incubator and 

environmental samples. The proliferation rate decreased when the field was oriented 

downward through the horizontal growth plane compared to incubator and environmental 

samples. Also, environmental samples exhibited slower proliferation compared to the 

incubator condition. For the lower seeding density (Fig.11), the difference of cell counting for 

each group became larger over time. The difference peaked on Day 3 when the number of 

cells in the “Field up” group was 23.57 ± 3.21% (mean ± STD,***p<0.001) higher than that in 

the Environmental group, while in the Field down group, it was 11.45 ± 1.99% (***p< 0.001) 

lower than in the Environmental group. Therefore, the total difference in cell’s proliferation 

rate attributable to TMS field direction was +35.02 %. 
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To investigate the effect of different culture times on cell proliferation, we conducted 

another experiment expanding culture time from 2 days to 2.5 days. The seeding density was 

0.5 million/flask and the new culture time points were Day 0.5, Day 1, Day 1.5, Day 2 and 

Day 2.5. Cells were counted 24 h after each treatment, so the corresponding counting time 

points were Day 1.5, Day 2, Day 2.5, Day 3 and Day 3.5 respectively. The effect of TMS and 

its direction on the proliferation of cells over time (Fig. 12) was similar to the previous results 

for this seeding density (Fig. 11). On Day 3.5, the number of cells in the “Field up” group was 

13.53 ± 1.36% (***p<0.001) higher than in the Environmental group, whereas the number of 

cells in the “Field down” group was 12.61 ± 1.76% (***p<0.001) lower than in the 

Environmental group. Therefore, the total difference in cell’s proliferation rate attributable to 

TMS field direction was +26.14 %. 

Fig. 10 Cell densities in the TMS 
experiment, derived using the Trypan 
blue cell counting method with an 
initial seeding density of 1 million 
cells/flask. Counting time is indicated 
in Table. I. 

Fig. 11 Cell densities in the TMS 
experiment, derived using the Trypan 
blue cell counting method with initial 
seeding density of 0.5 million 
cells/flask. Counting time is indicated in 
Table. I. 
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Fig.12 Cell densities in the TMS experiment, derived using the Trypan blue cell counting 
method for an initial seeding density of 0.5 million cells/flask. Culture times were Day 0.5, 
Day 1, Day1.5, Day 2 and Day 2.5. The corresponding Counting times were Day 1.5, Day 2, 
Day 2.5, Day 3 and Day 3.5, respectively. 
 

We used the CyQuant cell viability assay to confirm the results obtained with the 

Trypan blue cell counting method. This time we eliminated group 1 (Incubator) and we set 

four seeding densities. The design of this experiment was based on Table II. The effect of 

TMS field direction on cell proliferation obtained via the CyQuant method (Fig 13-16) was 

similar to the effect measured using the Trypan blue cell counting method. However, Fig.8, 

which had the seeding density of 100k per well did not follow the trend similar to other 

seeding densities i.e. the difference in the proliferation rate was not pronounced. It may be due 

to the fact that a large number of cells grew in the limited space so the cells might have 

attained 100% confluency earlier than Day 3. 

 



www.manaraa.com

18 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 

 

Fig. 13 Cell proliferation after TMS treatment 
of plates with an initial seeding density of 
20k/well. We used the CyQuant cell viability 
assay to count cells. On day 3, the number of 
cells in the “Field up” group was 22.06 ± 4.14% 
(mean ± STD as a percentage of the initial 
seeding density,*p<0.05) higher than in the 
Environmental group, whereas cell numbers in 
the “Field down” group were 28.77± 1.00% 
(**p<0.01) lower than in the Environmental 
group. 

Fig.14 Cell proliferation after TMS 
treatment of plates with an initial seeding 
density of 50k/well. We used the CyQuant 
cell viability assay to count cells. On day 3, 
the number of cells in the “Field up” group 
was 15.49  ± 7.26% (mean ± STD as a 
percentage of the initial seeding 
density,*p<0.05) higher than in the 
Environmental group, whereas cell numbers 
in the “Field down” group were 9.94 ± 
2.47% (*p<0.05) lower than in the 
Environmental group. 

Fig.15 Cell proliferation after TMS treatment of 
plates with an initial seeding density of80k/well. 
We used the CyQuant cell viability assay to count 
cells. On day 3, the number of cells in the “Field 
up” group was 15.57 ± 5.17% (mean ± STD as a 
percentage of the initial seeding density,*p<0.05) 
higher than in the Environmental group, whereas 
cell numbers in the “Field down” group were 11.62 
± 1.55% (*p<0.05) lower than in the 
Environmental group. 

Fig.16 Cell proliferation after TMS treatment of 
plates with an initial seeding density of100k/well. 
We used the CyQuant cell viability assay to count 
cells. On day 3, the number of cells in the “Field 
up” group was 14.69 ± 5.74% (mean ± STD as a 
percentage of the initial seeding density, p>0.05) 
higher than in the Environmental group, whereas 
cell numbers in the “Field down” group were the 
same (0 ± 4.50%, p>0.05) as those in the 
Environmental group. 
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A third cell counting method, the MTS cell viability assay, was performed to confirm 

the results obtained with the Trypan blue and CyQuant cell counting methods. With an initial 

seeding of 15k (Fig. 17), the number of cells in the “Field up” group was 19.88 ± 4.56% 

(***p<0.001) higher than in the Environmental control group. Meanwhile, the number of cells 

in the “Field down” group was 8.88 ± 1.39% (**p<0.01) lower than in the Environmental 

group. Next, using an initial seeding of 20k (Fig. 18), the number of cells in the “Field up” 

group was 19.60 ± 4.57% (**p<0.01) higher than in the Environmental group, while the 

number of cells in the “Field down” group was 8.16 ± 0.09% (**p<0.01) lower than in the 

Environmental group. Therefore, the total difference in cell’s proliferation rate attributable to 

TMS field direction was +27.76 %. 

 

 
 
 
 
 
 

 

 

 

Discussion 

We investigated the effect of magnetic field orientation on the proliferation rate of 

N27 dopaminergic neuronal cells using three different cell counting methods to cross-validate 

Fig. 17 Cell proliferation after TMS 
treatment of plates with an initial seeding 
density of 15k/well.  We used the MTS cell 
viability assay to count cells, reported here as 
a percentage of control group1 (Incubator). 
 

Fig. 18 Cell proliferation after TMS treatment 
of plates with an initial seeding density of 
20k/well. We used the MTS cell viability assay 
to count cells, reported here as a percentage of 
control group1 (Incubator). 
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the results. The MTS assay showed the highest difference in cell proliferation rate. It was also 

easy to replicate this counting procedure three times to obtain standard deviation. In the 

Trypan blue cell counting method, we used flasks to culture neuronal cells, which required 

more area to incubate replicate samples. Cell counting using the Trypan blue method was 

more time consuming because cell counting was performed one flask at a time, unlike the 

MTS method where cell counting was performed in groups. There were three replicate 

samples for each group (n=3) for Trypan blue method and for MTS and CyQuant cell viability 

assay, n=6, which is adequate to show statistical significance. In the CyQuant cell viability 

cell counting method, it was easy to replicate samples and we were also able to count cells of 

all groups at once, but the differences among groups were slightly smaller than those from the 

MTS cell counting method. Thus, the MTS cell viability assay cell counting method is 

recommended for investigating the proliferation rate of N27 dopaminergic neuronal cells 

under TMS treatment. 

 According to the design of all these experiments, each group of N27 dopaminergic 

neuronal cells received a 30 minutes TMS treatment each day. After experimenting with a 

one-hour treatment, we found that increasing the treatment time did not make much difference 

on cell proliferation rate. We used 0.25 Hz as the actual frequency because the minimum 

discharging and recharging time for the capacitor is 4 seconds when we set intensity of the 

monophasic stimulator at 100%. This time can be reduced by setting a lower intensity. 

However, we have used 100% intensity in order to have significant effect on the 

growth/proliferation rate. The temperature on the coil surfaces was measured by a thermal 

sensor which showed the temperature of the coil during stimulation. A temperature of 21.7 ± 

0.1 °C was maintained in the flask and throughout the stimulation period. There was no 
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obvious vibration of coils during the stimulation discerned by visually since the coil was fixed 

by two stages. Therefore, the difference in neural proliferation rate was due to the different 

orientation of magnetic field generated by double coil. Since during TMS the corresponding 

electric field generated by time varying magnetic field can affect neurons firing rate [9], 

different orientation of magnetic field generated clockwise and counterclockwise electric 

fields and induced current in the brain. The difference in the sequence of clockwise and 

counterclockwise induced eddy current in the neurons is the reason for the different 

proliferation of neurons. Since, the interaction between magnetic field and neurons is not well 

established, further investigation of changes in neuron responses due to application of time 

varying magnetic fields such as TMS are warranted. 

We plan to use different types of neuronal cells in future experiments to assess 

whether our results were cell-specific. We will also employ advanced imaging techniques to 

investigate any morphological changes in cells and cell components due to the effect of 

magnetic field orientation and stimulus parameters. Many factors potentially impact the 

proliferation of neuronal cells, such as BDNF, GDNF and NGF [18] so we will investigate the 

effects of TMS fields on these growth proteins. 

Conclusions 

The effect of magnetic field direction generated by TMS coils on the proliferation of 

N27 dopaminergic neuronal cells was investigated. Orienting the magnetic field upward 

through the horizontal plane of adherent cells increased their proliferation rate while 

orienting the magnetic field downward through the cell growth plane decreased their 

proliferation rate. The results obtained by the Trypan blue method of cell counting was 

verified by the CyQuant and MTS cell viability assay methods and all the results are 
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statistically significant. The changes in cell proliferation rate due to magnetic field direction 

is an important step forward in understanding the effect of magnetic fields on neuronal cell 

biology. Our findings could have important implications for the preclinical development of 

TMS treatments of neurological disorders and represents a new method to control the 

proliferation rate of neuronal cells. 
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Abstract 

Transcranial Magnetic Stimulation (TMS) has the potential to treat various 

neurological disorders non-invasively and safely. The “Halo coil” configuration can 

stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to 

other coil configurations. The existing “Halo coil” configuration is fixed and is limited in 

varying the site of stimulation in the brain. We have developed a new system based on the 

current “Halo coil” design along with a graphical user interface (GUI) system that enables 

the larger coil to rotate along the transverse plane. The new system can also enable vertical 

movement of larger coil. Thus, this adjustable “Halo coil” configuration can stimulate 

different regions of the brain by adjusting the position and orientation of the larger coil on the 

head. We have calculated magnetic and electric fields inside an MRI-derived heterogeneous 

head model for various positions and orientations of the coil. We have also investigated the 

mechanical and thermal stability of the adjustable “Halo coil” configuration for various 

positions and orientations of the coil to ensure safe operation of the system. 

 
Introduction 

Transcranial magnetic stimulation (TMS) is a painless and non-invasive 

neuromodulation technique based on the principles of magnetic induction [1-2]. TMS has 

been used to study brain function and is being investigated as a possible treatment for 
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numerous brain disorders [3]. The technique already shows good efficacy for the treatment of 

major depressive disorder [4]. We have previously reported a “Halo coil” configuration which 

can stimulate deeper regions of the human brain, but the configuration was fixed so that only a 

single site in the brain has a lower surface to deep-brain field ratio compared to other coil 

configurations [5]. Now, we have built a variable “Halo coil” configuration with a circular 

coil fixed on top of the head and with vertical and rotational movement of the larger coil to 

selectively stimulate different regions of the brain. During the stimulation, we used two 

stimulators to send AC current signals to two coils. One stimulator sends an AC current with a 

frequency of 2.5 kHz and an amplitude of 2500 A to the circular coil. The other stimulator 

sends AC current with a frequency of 2.5 kHz and an amplitude of 5000 A to the larger coil. 

We have also conducted thermal and mechanical analysis of the system to ensure its 

feasibility and stability. A GUI system has been built that accurately controls the movement 

and rotation of the larger coil using an Arduino microcontroller.  

 
Magnetic (Lorentz) Force Response 

COMSOL Multiphysics (Los Angeles, CA, USA) was used for magnetic force 

analysis. A 5000 A DC current was assigned in both coils to evaluate the maximum forces 

induced on the variable “Halo coil" system. Any forces experienced by the coils will be 

transferred to the insulation and thus the yield strength of insulation should be higher than the 

Lorentz forces exerted by the magnetic fields generated by the coils. The yield strength of 

copper is 70 MPa [6] and the ultimate tensile strength of the insulation, Nylon is 125 MPa [7]. 

The Lorentz force density in the coil can be calculated by equation (4), where J [A/m] is the 

current density and B [T] is the magnetic flux density. In this study, we used 3D models 

where J [A/m3] is the current density and i = x, y, z.  
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 (4) 
 

The calculated Lorentz force density f [N/m3] is shown in Fig. 3 for two extreme 

conditions for our system. The larger coil is rotated +30° and the distance between the 

centers of two coils is 5 cm and 15 cm. Fig. 19 (a) is the top view, (b) is the side view for a 

distance of 5 cm between the coils.  In Fig. 19 (c) and (d), the distance between the centers of 

two coils is 15 cm, (c) is the top view, (d) is the side view. 

             

              

 

 

 

 

 

The arrows in the picture show the direction of Lorentz forces and their lengths 

indicate the magnitude of that force density. In the side view, the majority of Lorentz force 

density was parallel to the direction of vertical movement of the large coil. The maximum 

Fig. 19 The result of force analysis between 
the two coils with larger coil rotated at +30°. 
In (a) and (b), the distance between the centers 
of two coils is 5 cm, while (a) is the top view, 
(b) is the side view.  In (c) and (d), the 
distance between the centers of two coils is 
15 cm, while (c) is the top view, (d) is the side 
view. 
 

(a) (a) (b) 

(c) (d) (c) 

(b) 

(d) 

Fig. 20 The result of thermal analysis of two 
coils with larger coil rotated at +30°. In (a) 
and (b), the distance between the centers of 
two coils is 5 cm, while (a) is the top view, 
(b) is the side view.  In (c) and (d), the 
distance between the centers of two coils is 
15 cm, while (b) is the top view, (d) is the 
side view. 
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Lorentz force was 335.01 MN/m3. The equivalent stress on the larger coil was 3.35 MPa. The 

coils are made of copper with a yield strength of 70 MPa and covered with Nylon, which has 

a yield/ultimate tensile strength of 125 MPa. Thus, the stress due to the Lorentz forces in the 

larger coil was significantly smaller than the yield strength of copper and Nylon. The system 

is therefore be mechanically stable and can withstand the expected Lorentz forces. However, 

the cyclic loading conditions which can occur in repetitive TMS have not been analyzed.  

 
Thermal Analysis 

The temperature in the coils was another important factor in the system because of the 

high amplitude of the current induced in the coil. This can generate a large amount of heat in 

the coil due to Joule’s law (Q= I2∙R∙t). The limit of surface temperature for electrical medical 

equipment has been specified by General Standard IEC 60601-2-37, which is 50°C in air and 

43°C at the surface of the body [8]. Thus, the modeling of heat was focused on the duration 

of the stimulation when either of the coils reached 50°C. The incompressible Navier-Stokes 

heat equation from the COMSOL Heat Transfer module was used to model the thermal 

changes in the coil system under TMS therapy conditions, as shown equation (5), 

 

  (5) 

 

where ρ is the fluid density, Cp is the fluid heat capacity, T is the temperature, u is the 

velocity field of the fluid, k is the thermal diffusivity of the material, and Q is external source 

heating [9]. According to the modeling results shown in Fig. 20, after stimulation for 231 

seconds, the small circular coil which is placed on the top on patient’s head, reached 50.04 

°C. Additionally, the vertical position and the rotational movement of the larger coil did not 
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have a significant effect on the heat generated in the two coils as all positions and 

orientations demonstrated similar results of approximately 50 °C in the smaller coil after 231 

seconds of stimulation. 

 

GUI system 

 A graphical user interface (GUI) 

was developed in Java to control the 

movement and rotation of the larger coil 

with a computer via an Arduino 

microcontroller as shown in Fig. 21. The 

left portion of the interface is the control 

panel which has two buttons to control the vertical movement of large coil by a linear 

actuator. The range of vertical movement is -5 cm to +5 cm compared to its origin with a step 

size of 1 cm. It also has two buttons to control the rotation by a servo motor. The range of 

rotation is -30º to +30° compared to its origin with a step size of 5°.The right portion of the 

interface shows the modeling results of electric and magnetic field for the selected position of 

the large coil. These images will show the distribution of magnetic and electric field which 

will indicate the site of stimulation with a field larger than the threshold or peak field for the 

selected position of the large coil. 

 

Conclusion 

TMS is a novel non-invasive and safe treatment for various neurological disorders. In 

our present work, we have designed and developed a variable “Halo coil” system that can 

Fig. 21 The graphic user interface (GUI) 
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achieve deep brain stimulation at specific treatment areas with the vertical and rotational 

movement of the larger coil in the “Halo coil” system. We have also developed a GUI system 

to control the movement precisely via a computer. The modeling results of magnetic and 

electric field confirm that our design can stimulate different parts of human brain. The 

modeling result of Lorentz forces show that the magnetic forces in coils do not exceed the 

yield strengths of the coil material and casing in the system. The modeling results of Joule 

heating showed that the treatment time of 231 seconds will heat the coil to a temperature of 

50.04 °C. Thus for longer treatment times, an active cooling system using external air or 

water circulation should be considered.  
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CHAPTER 4.GENERAL CONCLUSIONS 

General Discussion 

The study in Chapter 2 has investigated the effect of different orientation of magnetic 

field for TMS on the proliferation rate of N27 dopamine cells. Basically, the proliferation 

rate of N27 cells would increase after being treated with the magnetic field orienting upward 

through the horizontal plane of adherent cells while the rate would decrease after being 

treated with the magnetic field orienting downward through the cell growth plane. It also 

compared the advantages of three different cell counting methods which could give a 

suggestion to related studies in future. The result of this study would bring more attention on 

the in-vitro and in-vivo study on TMS to understand its mechanism or its effect on neural 

cells or tissues. 

The result in Chapter 3 has demonstrated the stability and feasibility of the Variable 

TMS coil system. It shows that the maximum electromagnetic (Lorentz) force was much 

smaller than the yield strength of the coil and its cover materials. Meanwhile, it points out the 

maximum time for treatment using this system is 231 seconds or 3 minutes and 51 seconds 

because of one of coils in the system would reach 50 ˚C at that time, which is the highest 

temperature for electrical medical equipment according to General Standard IEC 60601-2-37. 

Moreover, the vertical and rotational movement of the Halo coil does not affect both the 

mechanical and thermal properties of the whole system, which shows its stability.  

The results in chapter 2 and chapter 3 are addressed two major research areas in-vitro 

study and computer modeling and coil design, respectively. The results could help us to 

investigate more of the basic mechanism of TMS and bring more efficient and compact tools 

in clinical trials.  Therefore, there are many promising research opportunities in TMS in the 

 



www.manaraa.com

32 
 

three major areas shown in Fig. 2, which would eventually bring TMS as a major tool to treat 

different kinds of human brain diseases. 

Recommendation for Future Research 

Although the results in chapter 2 have shown the effect of magnetic field on 

proliferation rate of neurons, the basic mechanism of how TMS influences the growth of 

neurons is still not understood. In the meantime, there are many factors that could affect 

cell’s growth such as temperature, electromagnetic force, gravity and certain proteins like 

BDNF, GDNF and NGF [1]. Since we have monitored and demonstrated that temperature 

and electromagnetic force did not contribute much to the results in the experiment. Future 

work can be done on analysis those proteins like BDNF, GDNF and NGF. Besides, some 

articles have shown effect of magnetic field on the soma size and axon length of neural cells 

and using magnetic field to direct axon growth [2-3]. Thus, morphology studies on neurons 

by TMS treatment would be another approach to investigate its mechanism. Moreover, 

magnetic nanoparticles have shown possibilities for cell recognition, isolation, purification 

and enhancing the effect of magnetic field [3-4], so using magnetic nanoparticles in the 

experiment could show more significant results. 

The heat issue of TMS coil is one main challenge for long time repetitive TMS 

(rTMS) treatment. In our variable TMS coil system, the maximum treating time is less than 4 

minutes, which is quite small compared to treating time of regular repetitive TMS treatment. 

Although this issue can be resolved by adding water-cooling or air-cooling to the coil [5], the 

cooling component highly increases the weight of the coil which makes it difficult to build 

enough support structure for vertical and rotational movement of the coil. In our current 

design, we used polymer and 3D printing technology to make the support structure. However, 
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it cannot support the heavy cooling component of the coil, so future work can be done on 

design a more firm support structure to hold the air-cooling coil for long time TMS treatment 

with the variable TMS coil system. 
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APPENDIX A. MODELING OF ELETRIC AND MAGNETIC FIELD FOR 

VARIABLE TMS COIL SYSTEM 

 
We have used SEMCAD X (SPEAG, Swiss) finite element software to calculate the 

electric and magnetic fields generated by the fixed circular coil positioned at the vertex of the 

head with different orientations of the larger coil. An AC current with a frequency of 2.5 kHz 

and an amplitude of 2500 A was applied to the circular coil which is comparable to the pulse 

signal generated by a biphasic commercial TMS stimulator with 50% power intensity, and a 

current signal of the same frequency but with an amplitude of 5000 A was applied to the 

large coil [1]. We have used an anatomically realistic human head model with different 

electrical properties assigned to each tissue of the brain [2]. These parameters are shown in 

Table I [3]. 

 
Table 4. Values of Dielectric Properties at 2.5 kHz 

Tissue εr (Relative Permittivity) σ (Electric Conductivity) 
[S/m] 

Brain (grey matter) 7.81 × 104 1.04 × 10-1 
Brain (white matter) 3.43 × 104 6.45 × 10-2 

Cerebellum 7.84 × 104 1.24 × 10-1 
Cerebrospinal fluid 1.09 × 102 2.00 

Skin 1.14 × 103 2.00 × 10-4 
Skull 1.44 × 103 2.03 × 104 

 
The calculation of magnetic field was based on the Biot-Savart law as shown in equation 

(1) [4].  
0 ( )( )

4
dµ

π Ω
=

−∫ 0
0

J r'A r r'
r r'

     (1) 

The vector potential A is decoupled from the electric field E which is calculated using 
equation (2) where ∇·Es = 0 (solenoidal) and ∇×Ei = 0 (irrotational). 

 
jω ϕ= − +∇ = +s iE A E E   (2) 

The magneto-quasi-static calculation is described by equation (3). 
 

)( 0Aσωϕσ ⋅∇=∇⋅∇ j     (3) 
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Fig. 22 (a), (b), (c) and (d) show the difference in electric and magnetic fields 

generated in the head for different vertical positions of the large coil. When comparing Fig. 

22(b) and Fig. 22(d), it shows that the electric field in Fig. 22(b) is higher than that in Fig. 

22(d).  

 

 

 

 

 

 

However, the electric field in lower part of head model is higher in Fig .22(b) than in 

Fig .22(d), which is enhanced by the position of the large coil. These modeling results show 

the evidence that the larger coil enhances the electric and magnetic fields at the deeper 

regions of the brain by reducing the decay of field generated by the smaller circular coil 

which is fixed on the top of head. Thus, different positions of larger coil enables stimulation 

Fig. 22 Magnetic field (a and c) and electric 
field (b and d) generated in the 
anatomically realistic human head model 
for different vertical positions of the large 
coil. In figures a and b, the distance 
between two coils is 5 cm. In figures c and 
d, the distance between two coils is 15 cm.  
 
 

Fig. 23 Magnetic field (a and c) and electric 
field (b and d) generated in the anatomically 
realistic human head model for different 
rotational angles of the large coil. In figures 
a and b, the coil is rotated +30 degrees. In 
figures c and d, the coil is rotated -30 
degrees. 
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of different deeper regions of the human brain and helps clinicians to vary the site of 

stimulation according to the disorder that is being treated. 

Fig. 23 shows the induced electric field in the anatomical heterogeneous head model 

with the rotational movement of the larger coil. According to Fig. 23 (b) and (d), the position 

of the peak value of the electric field was different according to different positions of the 

larger coil and the peak value of electric field was approximately 250 V/m which is larger 

than the threshold electric field of 150 V/m reported by March et al. [5] and 120 V/m by 

Rosanova et al. [6].Therefore, rotation of the larger coil also reduces the decay of electric and 

magnetic field generated by the small circular coil similar to vertical movement. 
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Deep brain transcranial magnetic stimulation using variable “Halo coil”
system
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Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
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online 4 March 2015)

Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-

invasively and safely. The “Halo coil” configuration can stimulate deeper regions of the brain with

lower surface to deep-brain field ratio compared to other coil configurations. The existing “Halo

coil” configuration is fixed and is limited in varying the site of stimulation in the brain. We have

developed a new system based on the current “Halo coil” design along with a graphical user inter-

face system that enables the larger coil to rotate along the transverse plane. The new system can

also enable vertical movement of larger coil. Thus, this adjustable “Halo coil” configuration can

stimulate different regions of the brain by adjusting the position and orientation of the larger coil

on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous

head model for various positions and orientations of the coil. We have also investigated the me-

chanical and thermal stability of the adjustable “Halo coil” configuration for various positions and

orientations of the coil to ensure safe operation of the system. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4913937]

INTRODUCTION

Transcranial magnetic stimulation (TMS) is a painless

and non-invasive neuromodulation technique based on the

principles of magnetic induction.1,2 TMS has been used to

study brain function and is being investigated as a possible

treatment for numerous brain disorders.4 The technique al-

ready shows good efficacy for the treatment of major depres-

sive disorder.3 We have previously reported a “Halo coil”

configuration which can stimulate deeper regions of the

human brain, but the configuration was fixed so that only a

single site in the brain has a lower surface to deep-brain field

ratio compared to other coil configurations.5 Now, we have

built a variable “Halo coil” configuration with a circular coil

fixed on top of the head and with vertical and rotational

movement of the larger coil to selectively stimulate different

regions of the brain. During the stimulation, we used two

stimulators to send AC current signals to two coils. One stim-

ulator sends an AC current with a frequency of 2.5 kHz and

an amplitude of 2500 A to the circular coil. The other stimula-

tor sends AC current with a frequency of 2.5 kHz and an am-

plitude of 5000 A to the larger coil. We have also conducted

thermal and mechanical analysis of the system to ensure its

feasibility and stability. A graphical user interface (GUI) sys-

tem has been built that accurately controls the movement and

rotation of the larger coil using an Arduino microcontroller.

MODELING OF ELECTRIC AND MAGNETIC FIELD

We have used SEMCAD X (SPEAG, Swiss) finite ele-

ment software to calculate the electric and magnetic fields

generated by the fixed circular coil positioned at the vertex

of the head with different orientations of the larger coil. An

AC current with a frequency of 2.5 kHz and an amplitude of

2500 A was applied to the circular coil which is comparable

to the pulse signal generated by a biphasic commercial TMS

stimulator with 50% power intensity, and a current signal of

the same frequency but with an amplitude of 5000 A was

applied to the large coil.5 We have used an anatomically re-

alistic human head model with different electrical properties

assigned to each tissue of the brain.6 These parameters are

shown in Table I.7

The calculation of magnetic field was based on the Biot-

Savart law as shown in the following equation:8

A0 rð Þ ¼ l0

4p

ð
X

J0 r0ð Þ
jr� r0j dr0: (1)

The vector potential A is decoupled from the electric

field E which is calculated using Eq. (2) where r�Es¼ 0

(solenoidal) and r�Ei¼ 0 (irrotational)

E ¼ �jxAþru ¼ Es þ Ei: (2)

The magneto-quasi-static calculation is described by the

following equation:

r � rru ¼ jxr � ðrA0Þ: (3)

TABLE I. Values of dielectric properties at 2.5 kHz.

Tissue

er (relative

permittivity)

r (Electric

Conductivity) [S/m]

Brain (grey matter) 7.81� 104 1.04� 10�1

Brain (white matter) 3.43� 104 6.45� 10�2

Cerebellum 7.84� 104 1.24� 10�1

Cerebrospinal fluid 1.09� 102 2.00

Skin 1.14� 103 2.00� 10�4

Skull 1.44� 103 2.03� 104a)Author to whom correspondence should be addressed. Electronic mail:

hadimani@iastate.edu.

0021-8979/2015/117(17)/17B305/4/$30.00 VC 2015 AIP Publishing LLC117, 17B305-1

JOURNAL OF APPLIED PHYSICS 117, 17B305 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

129.186.252.43 On: Tue, 10 Mar 2015 01:43:00

http://dx.doi.org/10.1063/1.4913937
http://dx.doi.org/10.1063/1.4913937
http://dx.doi.org/10.1063/1.4913937
http://dx.doi.org/10.1063/1.4913937
mailto:hadimani@iastate.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4913937&domain=pdf&date_stamp=2015-03-04
neelampg
Typewritten Text
38



www.manaraa.com

Figs. 1(a)–1(d) show the difference in electric and magnetic

fields generated in the head for different vertical positions of

the large coil. When comparing Figs. 1(b) and 1(d), it shows

that the electric field in Fig. 1(b) is higher than that in Fig.

1(d). However, the electric field in lower part of head model

is higher in Fig. 1(b) than in Fig. 1(d), which is enhanced by

the position of the large coil. These modeling results show

the evidence that the larger coil enhances the electric and

magnetic fields at the deeper regions of the brain by reducing

the decay of field generated by the smaller circular coil

which is fixed on the top of head. Thus, different positions of

larger coil enable stimulation of different deeper regions of

the human brain and helps clinicians to vary the site of stim-

ulation according to the disorder that is being treated.

Fig. 2 shows the induced electric field in the anatomical

heterogeneous head model with the rotational movement of

the larger coil. According to Figs. 2(b) and 2(d), the position

of the peak value of the electric field was different according

to different positions of the larger coil and the peak value of

electric field was approximately 250 V/m which is larger

than the threshold electric field of 150 V/m, reported by

March et al.9 and 120 V/m by Rosanova et al.10 Therefore,

rotation of the larger coil also reduces the decay of electric

and magnetic field generated by the small circular coil simi-

lar to vertical movement.

MAGNETIC (LORENTZ) FORCE RESPONSE

COMSOL Multiphysics (Los Angeles, CA, USA) was

used for magnetic force analysis. A 5000 A DC current was

assigned in both coils to evaluate the maximum forces

induced on the variable “Halo coil” system. Any forces

experienced by the coils will be transferred to the insulation

and thus the yield strength of insulation should be higher

than the Lorentz forces exerted by the magnetic fields gener-

ated by the coils. The yield strength of copper is 70 MPa

(Ref. 11) and the ultimate tensile strength of the insulation,

Nylon is 125 MPa.12 The Lorentz force density in the coil

can be calculated by Eq. (4), where J (A/m) is the current

density and B (T) is the magnetic flux density. In this study,

we used 3D models where J (A/m3) is the current density

and i¼ x, y, z

fi ¼ J� B: (4)

The calculated Lorentz force density f (N/m3) is shown in

Fig. 3 for two extreme conditions for our system. The larger

coil is rotated þ30� and the distance between the centers of

two coils is 5 cm and 15 cm. Fig. 3(a) is the top view and

Fig. 3(b) is the side view for a distance of 5 cm between the

coils. In Figs. 3(c) and 3(d), the distance between the centers

of two coils is 15 cm, i.e., Fig. 3(c) is the top view and Fig.

3(d) is the side view.

The arrows in the picture show the direction of Lorentz

forces and their lengths indicate the magnitude of that force

density. In the side view, the majority of Lorentz force den-

sity was parallel to the direction of vertical movement of the

large coil. The maximum Lorentz force was 335.01 MN/m3.

The equivalent stress on the larger coil was 3.35 MPa. The

coils are made of copper with a yield strength of 70 MPa and

covered with Nylon, which has a yield/ultimate tensile

strength of 125 MPa. Thus, the stress due to the Lorentz

forces in the larger coil was significantly smaller than the

yield strength of copper and Nylon. The system is therefore

be mechanically stable and can withstand the expected

Lorentz forces. However, the cyclic loading conditions,

which can occur in repetitive TMS, have not been analyzed.

FIG. 1. Magnetic field ((a) and (c)) and electric field ((b) and (d)) generated

in the anatomically realistic human head model for different vertical posi-

tions of the large coil. In figures (a) and (b), the distance between two coils

is 5 cm. In figures (c) and (d), the distance between two coils is 15 cm.

FIG. 2. Magnetic field ((a) and (c)) and electric field ((b) and (d)) generated

in the anatomically realistic human head model for different rotational

angles of the large coil. In figures (a) and (b), the coil is rotated þ30�. In fig-

ures (c) and (d), the coil is rotated �30�.
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THERMAL ANALYSIS

The temperature in the coils was another important fac-

tor in the system because of the high amplitude of the current

induced in the coil. This can generate a large amount of heat

in the coil due to Joule’s law (Q¼ I2�R�t). The limit of sur-

face temperature for electrical medical equipment has been

specified by General Standard IEC 60601-2-37, which is

50 �C in air and 43 �C at the surface of the body.13 Thus, the

modeling of heat was focused on the duration of the stimula-

tion when either of the coils reached 50 �C. The incompressi-

ble Navier-Stokes heat equation from the COMSOL Heat

Transfer module was used to model the thermal changes in

the coil system under TMS therapy conditions, as shown in

the following equation:

qCp
@T

@t
þ Cpu � rT ¼ r � krTð Þ þ Q; (5)

where q is the fluid density, Cp is the fluid heat capacity, T is

the temperature, u is the velocity field of the fluid, k is the

thermal diffusivity of the material, and Q is external source

heating.14 According to the modeling results shown in Fig. 4,

after stimulation for 231 s, the small circular coil, which is

placed on the top on patient’s head, reached 50.04 �C.

Additionally, the vertical position and the rotational move-

ment of the larger coil did not have a significant effect on the

heat generated in the two coils as all positions and orienta-

tions demonstrated similar results of approximately 50 �C in

the smaller coil after 231 s of stimulation.

GUI SYSTEM

A GUI was developed in Java to control the movement

and rotation of the larger coil with a computer via an

Arduino microcontroller, as shown in Fig. 5. The left portion

of the interface is the control panel, which has two buttons to

control the vertical movement of large coil by a linear actua-

tor. The range of vertical movement is �5 cm to þ5 cm com-

pared to its origin with a step size of 1 cm. It also has two

buttons to control the rotation by a servo motor. The range of

rotation is �30� to þ30� compared to its origin with a step

size of 5�. The right portion of the interface shows the mod-

eling results of electric and magnetic field for the selected

position of the large coil. These images will show the distri-

bution of magnetic and electric field, which will indicate the

site of stimulation with a field larger than the threshold or

peak field for the selected position of the large coil.

FIG. 3. The result of force analysis between the two coils with larger coil

rotated at þ30�. In (a) and (b), the distance between the centers of two coils

is 5 cm, where (a) is the top view and (b) is the side view. In (c) and (d), the

distance between the centers of two coils is 15 cm, where (c) is the top view

and (d) is the side view.

FIG. 4. The result of thermal analysis of two coils with larger coil rotated at

þ30�. In (a) and (b), the distance between the centers of two coils is 5 cm,

where (a) is the top view and (b) is the side view. In (c) and (d), the distance

between the centers of two coils is 15 cm, where (b) is the top view and (d)

is the side view.

FIG. 5. The graphic user interface (GUI).
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CONCLUSION

TMS is a novel non-invasive and safe treatment for

various neurological disorders. In our present work, we

have designed and developed a variable “Halo coil” system

that can achieve deep brain stimulation at specific treat-

ment areas with the vertical and rotational movement of the

larger coil in the “Halo coil” system. We have also deve-

loped a GUI system to control the movement precisely via

a computer. The modeling results of magnetic and electric

field confirm that our design can stimulate different parts of

human brain. The modeling result of Lorentz forces show

that the magnetic forces in coils do not exceed the yield

strengths of the coil material and casing in the system. The

modeling results of Joule heating showed that the treatment

time of 231 s will heat the coil to a temperature of

50.04 �C. Thus, for longer treatment times, an active cool-

ing system using external air or water circulation should be

considered.
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Abstract--Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a 

variety of neurological disorders. But the effect that magnetic fields have on neurons has not been well 

documented in the literature. Using a monophasic stimulator, we investigated the effect of different 

orientation of magnetic field generated by TMS coils on the proliferation rate of N27 neuronal cells 

cultured in flasks and multi-well plates. Exposing horizontally adherent N27 cells to a magnetic field 

pointing upward through the neuronal proliferation layer increased the proliferation of cells compared 

with the control group. On the other hand, proliferation rate decreased in cells exposed to a magnetic field 

pointing downward through the neuronal growth layer compared with the control group. The results were 

consistent across different methods of measuring proliferation and cell counting procedures. We 

confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the 

CyQuant and MTS cell viability assays. Our findings could have important implications for the 

preclinical development of TMS treatments of neurological disorders and represents a new method to 

control the proliferation rate of neuronal cells. 

Key words: TMS; dopaminergic neurons; proliferation rate; orientation of magnetic field  

INTRODUCTION 

Transcranial Magnetic Stimulation is a non-invasive neuromodulation technique that uses time varying 

short pulses of magnetic field to induce an electric field in the conductive tissues of the brain thus, 

modulating the synaptic transmission of neurons. This neuromodulation technique can be used to excite or 

inhibit the firing rate of neurons which can then be used for treatment of various neurological disorders 

such as major depressive disorder, Parkinson's disease, Post-traumatic stress disorder and migraine (Barker 
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et al.,1985; George et al.,2010; Vonloh et al.,2013; Rosenberg 2002; Dodick et al.,2010). Since the US 

Food and Drug Administration (FDA) approved TMS as a treatment for depression in 2008, there has been 

less focus on in vitro and animal studies in the literature compared to in vivo studies in humans (Meng et 

al.,2015; Crowther et al.,2013; Wassermann and Zimmermann, 2012; March et al.,2014). The effects of 

TMS on individual neurons need to be thoroughly understood to fully utilize TMS as a neuromodulation 

tool for treating neurological disorders especially those originating from subcortical regions of the brain.  

Few articles have reported the effect of time-varying magnetic fields, similar to those generated by 

TMS, on the proliferation rates of neurons. (Bonmassar et al.,2009) designed micro TMS coils and showed 

that the direction of magnetic field affects the firing frequency of neurons, but the authors did not report 

the effect of magnetic field on the proliferation rate. Meanwhile, some articles have reported the effect of 

static magnetic field on cell’s proliferation rate (Miyakoshi 2009). Authors have used static magnetic fields 

from 1 to 10 tesla and did not find any significant effect on cell proliferation or on genetic toxicity, 

regardless of the length of treatment. However, there was a small effect on intracellular Ca2+ ion control. 

Some articles have reported beneficial effects of DC electric field (EF) on neural proliferation and 

differentiation. The EF gradient affects morphology and phenotype of adult neural stem/progenitor cells 

(NPCs), which shows the potential of utilizing EF to control migration, differentiation and alignment of 

stem cells transplanted to treat nervous system disorders (Ariza et al.,2010). Extremely low-frequency 

electromagnetic fields (ELF-EMFs) have been used therapeutically to drive cardiac-specific differentiation 

in adult human cardiac progenitor cells without any pharmacological or genetic manipulation of cells 

(Gaetani et al.,2009). As far as we know, no one has published on the effect of TMS magnetic field on the 

proliferation rate of neurons or on the morphology of cells.  

In this paper, we have presented the effect of magnetic field generated by TMS coils on the 

proliferation of N27 dopaminergic neurons. We have used different cell proliferation and cell counting 

procedures to confirm that directing a magnetic field downward or upward through the horizontal 

proliferation plane of adherent cell cultures decreased or increased cell proliferation rates, respectively. It is 
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important to note that the direction of the induced electric current from the time varying TMS fields will be 

in clockwise or counterclockwise loops when the magnetic field is in up or down direction of the cell 

culture as shown in Fig. 4. This experimental set up is similar to the TMS treatment on human brain where 

the induced electric field from the TMS coils will be in clockwise or counterclockwise loops in the cortex.   

EXPERIMENTAL PROCEDURES 
A. Magnetic Field Generated by TMS coils 

 
 

 
 

 

A Magstim Standard 70 mm double coil was used for treating N27 neurons. Magnetic field was 

measured on the surface of the coil using a gaussmeter and a hall probe. The field was also calculated 

using finite element electromagnetic modeling software, SEMCAD X. The measured and calculated axial 

components of the magnetic field intensities are shown in Fig.1 and Fig.2. Magnetic field is negative in the 

negative x-axis and positive in the positive x-axis which is shown Fig. 2. It also shows magnetic field 

values at 5mm above the coil surface where dopaminergic neurons are placed during TMS treatment after 

considering the thickness of flask and thermal insulation layer. According to these figures, the peak value 

of measured magnetic field intensity at 5mm above the coil surface is 0.55 MA/m which is reduced by 

approximately 0.1MA/m. Fig. 3 shows the top view of distribution of magnetic field intensity generated by 

double coil. Fig.4 shows the different orientations of magnetic field generated by the coil and directions of 

Fig.1 The axial component of magnetic field intensity 
along the diameter of a Magtism® Standard 70 mm 
double coil at coil surface. The red line is simulation 
result from SEMCAD X and the black line is 
measured result using gauss meter. The intensity of 
Magstim Rapid2 stimulator was 100%. 
 

Fig. 2 The axial component of magnetic field intensity 
along the diameter of a Magtism® Standard 70 mm double 
coil at height of 5mm above coil surface. The red line is 
simulation result from SEMCAD X and the black line is 
measured result using gauss meter. The intensity of 
Magstim Rapid2 stimulator was 100%. 
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current in each circle of the double coil. The red arrows on the left indicate the directions of supplied 

current (5000 A) in left circle as counterclockwise and clockwise in the right circle. The cross symbols 

indicate the magnetic flux pointing into the plane and the dot symbols indicate the magnetic flux pointing 

out of the plane.  

 
 

 
 

 

 

 

 

According to Maxwell’s equation, time-varying magnetic field will generate an electric field which 

induces eddy currents in the conducting neurons. The supplied current is a pulse wave which has a 

frequency of 2.5 kHz and magnitude of 5000 A, so its period is 0.4 ms. The stimulator sends only one 

pulse with a current amplitude of 5000 A in clockwise and counterclockwise directions in left and right 

circles of the coil respectively as shown in Fig. 4. Thus, the supplied current in each circular coil will 

generate a time varying magnetic field change from 0 to its peak value, during its first half period, which 

results in the corresponding induced eddy current in both areas shown in Fig. 5 and Fig. 6. According to 

Fig. 3 Distribution of magnetic field intensity of double 
coil (2D top view). 
 

Fig. 4 Orientation of magnetic flux lines generated by 
double coil, cross representing upward and dot representing 
downward field. The red arrows show the direction of 
supplied current with a peak magnitude of 5000 A. The 
two blue polygons represent the two flasks. 
 

Fig. 5 Distribution of induced current on the coil plane 
at the first half of period of supplied current (2D top 
view). 
 

Fig. 6 Distribution of induced current on the coil plane 
at the second half of period of supplied current (2D top 
view). 
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Lenz’s law the induced current in the left circular coil was counterclockwise and it was clockwise in the 

right circular coil. Similarly, the value of the supplied current in both coils would change from its peak of 

5000 A to 0 during the second half period. Thus, the induced eddy current on the left and right flasks was 

clockwise and counterclockwise, respectively. Therefore, the difference between the two flasks was the 

sequence of the direction of the eddy currents. 

B. Cell Culture 
Immortalized rat mesencephalic 1RB3AN27 cells (N27) were grown in RPMI-1640 medium 

supplemented with 10% fetal bovine serum, 1% L-glutamine, 50 units penicillin and 50 µg/ml 

streptomycin and maintained at 37°C with a humidified atmosphere containing 5% CO2, as described 

previously (Anantharam et al.,2002;  Prasad et al.,1998). On Day 0, an equal number of N27 cells were 

seeded into each T-75 flask or 96-well plate. Groups were distinguished by culture time with two control 

and two TMS groups per time point and four replicate samples (flask or plate) per group. Control 1 was 

always kept in the incubator and was named Incubator in Table I. Control 2 was kept in the biosafety 

cabinet during the TMS treatment and was named Environmental in Table I. Table I shows culture time 

points and counting time points for the different sample locations and magnetic field orientations (“Field 

up” and “Field down”), which were used in a Trypan blue cytotoxicity assay. Table II shows cell culture 

samples with their culture time points as well as counting time points used in a CyQuant cell proliferation 

assay. Table III shows culture samples with their culture and counting time points for an MTS cell 

viability assay and cell counting method. We performed a cell count for each sample of cells 24 hours 

after its TMS treatment to ensure that the cells had enough time to show any effects of TMS on their 

proliferation. 

C. TMS experiment on dopaminergic neurons 
We used a monophasic stimulator to treat N27 cell cultures. A set of 6 pulses with 4 seconds waiting 

time in between them was formed as one train and a waiting time of 10 seconds between each train was 

introduced, so the pulse repetition rate (TMS treatment frequency) we used is 0.25 Hz. This is a low 

frequency compared to usual clinical protocol frequency however, in order to obtain 100% power in the 
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coil and avoid rapid heating up of the coil we have used this low frequency. It is not possible to operate at 

higher frequencies at full power with the existing set-up. A total of 60 trains with 360 pulses were 

delivered per 30-minute TMS treatment. An air-cooled double coil was used which has opposite current 

directions in each coil, generating magnetic fields on top side of each coil with opposite directions. Using 

air-cooled coils allowed us to induce magnetic fields without raising the temperature of the T-75 flasks 

placed on them. All TMS treatments on N27 cells were performed in a sterile biosafety cabinet (Fig. 7). 

The flask set above the left coil was designated “Field up” and the flask set above the right coil was 

designated “Field down”, corresponding to the orientation of the magnetic fields.  

 

Fig. 7 Arrangement of the 30-minute TMS treatment delivered to two T-75 flasks. The directions of the two 
oppositely oriented magnetic fields were labeled on the double coil. Field orientation was upward on the left coil and 
downward on the right coil, as shown in the inset figure. We used two clamps to fix the coil in the cell culture 
cabinet and a layer of bubble wrap separated both flasks from the coils to maintain a thermal barrier. 

D. Cytotoxicity assay   
Cytotoxic cell death was measured as per Life Technologies’ Trypan blue exclusion cell counting 

method (Xu et al.,2008). Briefly, after treatment cells were harvested with trypsin-EDTA and 

resuspended in 1X PBS, we then took 10 µl of cell suspension from one sample and added with 10 µl of 

0.4% trypan blue solution (Life Technologies) and triturated this mixture. Then, we put 10 µl of the 

mixture into the cell counting slide and place the slide into the automatic cell counter to count the 

concentration of cells in each sample.  Finally, we extrapolated the total number of cells in each sample 

by multiplying its volume and concentration (Xu et al.,2008).  By using this method, we counted the 

 
 



www.manaraa.com

48 
 

number of cells in each of the four replicate samples according to the counting time points shown in Table. 

I. We studied the effect of TMS on 2 different initial cell densities, 1 million cells/flask and 0.5 million 

cells/flask (n=4).  

 

 

 

 

 

E. CyQuant cell proliferation assay  
 We used Life technologies’ CyQuant cell viability assay to confirm our results from the Trypan blue cell 

counting procedures. On day 0, we seeded the N27 cells in 24-well plates (n=3) with the four rows per 

plate. In each plate, there were 4 rows and three columns. Row 1 to row 4 have different seeding densities; 

20k, 50k, 80k, to 100k, respectively. Each row had three replicated samples in three columns to account 

for standard deviation. We had three groups with different culture times: Day 0, Day 1 and Day 2 (Table 

II). Briefly, after 24 hours post-treatment, we read the fluorescence with excitation maximum at 485 nm 

and the emission maximum at 530 nm using a Synergy 2 plate reader (BioTek) (Jones et al.,2001). We 

pooled the groups designated as Incubator and Environmental in Table I, because the difference between 

them was insignificant. 

F. MTS cell viability assay cell counting method 
 Cell viability was measured using Promega’s MTS assay   to confirm the results from Trypan blue and 

CyQuant cell proliferation assays. Briefly, on day 0, we seeded the wells of 96-well plates with 15k for 

Culture 
Time 
point 

Counting 
Time 
point 

Sample Description 

Day 0 Day 1 Incubator Environmental Field 
up 

Field 
down 

Day 0.5 Day 
1.5 

Incubator Environmental Field 
up 

Field 
down 

Day 1 Day 2 Incubator Environmental Field 
up 

Field 
down 

Day 1.5 Day 
2.5 

Incubator Environmental Field 
up 

Field 
down 

Day 2 Day 3 Incubator Environmental Field 
up 

Field 
down 

Culture 
Time 
Point 

Counting 
Time 
point 

Sample Description 

Day 0 Day 1 Environmental Field 
up 

Field 
down 

Day 1 Day 2 Environmental Field 
up 

Field 
down 

Day 2 Day 3 Environmental Field 
up 

Field 
down 

Table I. Design of the TMS experiment with Trypan blue 
cell counting method for cell densities of 1 and 0.5 
million cells /flask. 

Table II. Design of the TMS experiment with 
CyQuant cell viability assay cell counting 
method for cell densities of 100k, 80k, 50k and 
20k per well 
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one row and half with 20k for another row of N27 cells in 200 µL of proliferation medium per well. Each 

row had 6 duplicated samples (n=6). The design of the experiment was according to Table III., TMS 

treatment was performed with “Field up” and “Field down” on 2 different well plates. After 24 hours 

post-treatment, 20µl MTS reagent (CellTiter 96® Aqueous One Solution Reagent) was added to each 

well and incubated at 37°C in a CO2 incubator for 90 min and absorbance was read at 490 nm and 670 nm 

in a Spectramax plate reader (Molecular Devices). We subtracted the baseline via Abs490-Abs670 prior to 

data analysis (Mahon et al.,2000).  

 
Table III. Design of the TMS experiment with MTS cell viability assay cell counting method for cell densities of 15k 
and 20k per well. 

 

 

 

 

G. Statistical significance analysis 

Statistical significance analysis was performed using Originlab 9.0 software (OriginLab Corporation, 

Northampton, MA, USA). Raw data analysis were analyzed using a two unpaired t-test. Statistically 

significant differences are indicated by asterisks as follows: *p<0.05, **p<0.01 and *p<0.001.  

RESULTS 

After TMS treatment of N27 cells, we counted the number of viable cells using the Trypan blue method 

for initial seeding densities of 1 million (Fig. 8) and 0.5 million (Fig. 9) cells per flask. The culture time 

and counting time points are indicated in Table I. The result showed that the proliferation rate increased 

after TMS stimulation with the magnetic field oriented upward through the horizontal plane of adherent 

cells, compared to incubator and environmental samples. The proliferation rate decreased when the field 

was oriented downward through the horizontal growth plane compared to incubator and environmental 

samples. Also, environmental samples exhibited slower proliferation compared to the incubator condition. 

For the lower seeding density (Fig.9), the difference of cell counting for each group became larger over 

time. The difference peaked on Day 3 when the number of cells in the “Field up” group was 23.57 ± 3.21% 

Culture 
Time 
Point 

Counting 
Time 
point 

Sample Description 

Day 0 Day 1 Control  Environmental Field 
up 

Field 
down 
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(mean ± STD,***p<0.001) higher than that in the Environmental group, while in the Field down group, it 

was 11.45 ± 1.99% (***p< 0.001) lower than in the Environmental group. Therefore, the total difference in 

cell’s proliferation rate attributable to TMS field direction was +35.02 %. 

 

 

 

To investigate the effect of different culture times on cell proliferation, we conducted another 

experiment expanding culture time up from 2 days to 2.5 days. The seeding density was 0.5 million/flask 

and the new culture time points were Day 0.5, Day 1, Day 1.5, Day 2 and Day 2.5. Cells were counted 24 h 

after each treatment, so the corresponding counting time points were Day 1.5, Day 2, Day 2.5, Day 3 and 

Day 3.5 respectively. The effect of TMS and its direction on the proliferation of cells over time (Fig. 10) 

was similar to the previous results for this seeding density (Fig. 9). On Day 3.5, the number of cells in the 

“Field up” group was 13.53 ± 1.36% (***p<0.001) higher than in the Environmental group, whereas the 

number of cells in the “Field down” group was 12.61 ± 1.76% (***p<0.001) lower than in the 

Environmental group. Therefore, the total difference in cell’s proliferation rate attributable to TMS field 

direction was +26.14 %. 

Fig. 8 Cell densities in the TMS experiment, 
derived using the Trypan blue cell counting 
method with an initial seeding density of 1 
million cells/flask. Counting time is indicated 
in Table. I. 

Fig. 9 Cell densities in the TMS experiment, 
derived using the Trypan blue cell counting 
method with initial seeding density of 0.5 
million cells/flask. Counting time is indicated in 
Table. I. 
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Fig. 10.Cell densities in the TMS experiment, derived using the Trypan blue cell counting method for an initial 
seeding density of 0.5 million cells/flask. Culture times were Day 0.5, Day 1, Day1.5, Day 2 and Day 2.5. The 
corresponding Counting times were Day 1.5, Day 2, Day 2.5, Day 3 and Day 3.5, respectively. 

 

We used the CyQuant cell viability assay to confirm the results obtained with the Trypan blue cell 

counting method. This time we eliminated group 1 (Incubator) and we set four seeding densities. The 

design of this experiment was based on Table II. The effect of TMS field direction on cell proliferation 

obtained via the CyQuant method (Fig 11-14) was similar to the effect measured using the Trypan blue cell 

counting method. However, Fig.8, which had the seeding density of 100k per well did not follow the trend 

similar to other seeding densities i.e. the difference in the proliferation rate was not pronounced. It may be 

due to the fact that a large number of cells grew in the limited space so the cells might have attained 100% 

confluency earlier than Day 3. 
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Fig. 11 Cell proliferation after TMS treatment of plates 
with an initial seeding density of 20k/well. We used the 
CyQuant cell viability assay to count cells. On day 3, the 
number of cells in the “Field up” group was 22.06 ± 
4.14% (mean ± STD as a percentage of the initial seeding 
density,*p<0.05) higher than in the Environmental group, 
whereas cell numbers in the “Field down” group were 
28.77± 1.00% (**p<0.01) lower than in the Environmental 
group. 

Fig.12 Cell proliferation after TMS treatment of 
plates with an initial seeding density of 50k/well. We 
used the CyQuant cell viability assay to count cells. 
On day 3, the number of cells in the “Field up” group 
was 15.49  ± 7.26% (mean ± STD as a percentage of 
the initial seeding density,*p<0.05) higher than in the 
Environmental group, whereas cell numbers in the 
“Field down” group were 9.94 ± 2.47% (*p<0.05) 
lower than in the Environmental group. 

Fig. 13 Cell proliferation after TMS treatment of 
plates with an initial seeding density of80k/well. We 
used the CyQuant cell viability assay to count cells. 
On day 3, the number of cells in the “Field up” 
group was 15.57 ± 5.17% (mean ± STD as a 
percentage of the initial seeding density,*p<0.05) 
higher than in the Environmental group, whereas 
cell numbers in the “Field down” group were 11.62 
± 1.55% (*p<0.05) lower than in the Environmental 
group. 

Fig. 14 Cell proliferation after TMS treatment of plates 
with an initial seeding density of100k/well. We used 
the CyQuant cell viability assay to count cells. On day 
3, the number of cells in the “Field up” group was 
14.69 ± 5.74% (mean ± STD as a percentage of the 
initial seeding density, p>0.05) higher than in the 
Environmental group, whereas cell numbers in the 
“Field down” group were the same (0 ± 4.50%, p>0.05) 
as those in the Environmental group. 
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A third cell counting method, the MTS cell viability assay, was performed to confirm the results 

obtained with the Trypan blue and CyQuant cell counting methods. With an initial seeding of 15k (Fig. 15), 

the number of cells in the “Field up” group was 19.88 ± 4.56% (***p<0.001) higher than in the 

Environmental control group. Meanwhile, the number of cells in the “Field down” group was 8.88 ± 1.39% 

(**p<0.01) lower than in the Environmental group. Next, using an initial seeding of 20k (Fig. 16), the 

number of cells in the “Field up” group was 19.60 ± 4.57% (**p<0.01) higher than in the Environmental 

group, while the number of cells in the “Field down” group was 8.16 ± 0.09% (**p<0.01) lower than in the 

Environmental group. Therefore, the total difference in cell’s proliferation rate attributable to TMS field 

direction was +27.76 %. 

 

 
 
 
 
 
 

 

 
DISCUSSION 

 We investigated the effect of magnetic field orientation on the proliferation rate of N27 dopaminergic 

neuronal cells using three different cell counting methods to cross-validate the results. The MTS assay 

showed the highest difference in cell proliferation rate. It was also easy to replicate this counting procedure 

three times to obtain standard deviation. In the Trypan blue cell counting method, we used flasks to culture 

neuronal cells, which required more area to incubate replicate samples. Cell counting using the Trypan 

blue method was more time consuming because cell counting was performed one flask at a time, unlike the 

Fig. 15 Cell proliferation after TMS treatment of 
plates with an initial seeding density of 15k/well.  We 
used the MTS cell viability assay to count cells, 
reported here as a percentage of control group1 
(Incubator). 

 

Fig. 16 Cell proliferation after TMS treatment of plates 
with an initial seeding density of 20k/well. We used the 
MTS cell viability assay to count cells, reported here as a 
percentage of control group1 (Incubator). 
 

 
 



www.manaraa.com

54 
 

MTS method where cell counting was performed in groups. There were three replicate samples for each 

group (n=3) for Trypan blue method and for MTS and CyQuant cell viability assay, n=6, which is adequate 

to show statistical significance. In the CyQuant cell viability cell counting method, it was easy to replicate 

samples and we were also able to count cells of all groups at once, but the differences among groups were 

slightly smaller than those from the MTS cell counting method. Thus, the MTS cell viability assay cell 

counting method is recommended for investigating the proliferation rate of N27 dopaminergic neuronal 

cells under TMS treatment. 

 According to the design of all these experiments, each group of N27 dopaminergic neuronal cells 

received a 30 minutes TMS treatment each day. After experimenting with a one-hour treatment, we found 

that increasing the treatment time did not make much difference on cell proliferation rate. We used 0.25 Hz 

as the actual frequency because the minimum discharging and recharging time for the capacitor is 4 

seconds when we set intensity of the monophasic stimulator at 100%. This time can be reduced by setting a 

lower intensity. However, we have used 100% intensity in order to have significant effect on the 

growth/proliferation rate.. The temperature on the coil surfaces was measured by a thermal sensor which 

showed the temperature of the coil during stimulation. A temperature of 21.7 ± 0.1 °C was maintained in 

the flask and throughout the stimulation period. There was no obvious vibration of coils during the 

stimulation discerned by visually since the coil was fixed by two stages. Therefore, the difference in neural 

proliferation rate was due to the different orientation of magnetic field generated by double coil. Since 

during TMS was the corresponding electric field generated by time varying magnetic field can affect 

neurons firing rate (Bonmassar et al.,2012), different orientation of magnetic field will generate clockwise 

and counterclockwise electric fields and induced current in the brain. The difference in the sequence of 

clockwise and counterclockwise induced eddy current in the neurons is the reason for the different 

proliferation of neurons. Since, the interaction between magnetic field and neurons is not well established, 

further investigation of changes in neuron responses due to application of time varying magnetic fields 

such as TMS are warranted. 
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We plan to use different types of neuronal cells in future experiments to assess whether our results were 

cell-specific. We will also employ advanced imaging techniques to investigate any morphological changes 

in cells and cell components due to the effect of magnetic field orientation and stimulus parameters. Many 

factors potentially impact the proliferation of neuronal cells, such as BDNF, GDNF and NGF (Allen et 

al.,2013) so we will investigate the effects of TMS fields on these growth proteins. 

CONCLUSIONS 

 The effect of magnetic field direction generated by TMS coils on the proliferation of N27 

dopaminergic neuronal cells was investigated. Orienting the magnetic field upward through the horizontal 

plane of adherent cells increased their proliferation rate while orienting the magnetic field downward 

through the cell growth plane decreased their proliferation rate. The results obtained by the Trypan blue 

method of cell counting was verified by the CyQuant and MTS cell viability assay methods and all the 

results are statistically significant. The changes in cell proliferation rate due to magnetic field direction is 

an important step forward in understanding the effect of magnetic fields on neuronal cell biology. Our 

findings could have important implications for the preclinical development of TMS treatments of 

neurological disorders and represents a new method to control the proliferation rate of neuronal cells. 
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